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ABSTRACT

—~

‘transfer from an adatom-surface bond in an excited vibrational

A general expression is obtained for the rate of energy

state due to IR laser irradiation to vibrational modes of the
solid. The rate is seen to involve time Fourier transforms
of powers of a correlation function for the displacement of
B different lattice particles at different times, raciprocal-
| - space Fourier components of a suitably chosen pair potential
é between the adatom and each lattice atom and a weight factor
; ﬁf , associated with the laser-excited state of the adatom-surface
bond. This "factorization” of the energy transfer zate into
components depending on the properties of the laser, those cf
the adatom-surface bond and those of the s0lid provides a
simple physical picturo:of the relaxation process within a

rigorous framework and strongly suggests many points of depart-

ure towards more phenomenological approaches to laser-

stimulated surface processes.




I. Introduction

-

An understanding of the fundamental interactions between a solid surface
and adsorbed atoms or molecules is necessary for a proper description of many
{mportant processes such as catalytic reactions, corrosion, vapor deposition
and gas-surface scattering. Theoretical studies along these 1ines range from
classical and semiclassical to purely quantum mechanical. While most have
addressed the somewhat more tractable problem of weak physisorption,l some
models for strong chemisorption have also appeared. 2 Ir the present work we
are concerned with the vibrational states of the system, namely the
vibrational structure of the adspecies, ~f the bond between the surface and
the adspecies, and that of the bulk solid and its surface (the phonons). In
the past, the dynamical interactions between the solid and the adspecies have
4acluded multiphonon effects, ‘one-phonon effects or no phonons. There is
strong indication from some of these studies that multiphonon effects are

3 The use

quite important, a particular example being stimulated desorption.
of high-power lasers to initfate, control or enhance gas-phase reactions is
established.4 Lasers have also been used as heat sources on surfaces
in applications such as anma'lings and deposition via thermal reactions in
the gas phase-‘ Only a few applications of low-power lasers to gas-surface
reactions have been reported, however, and selective, nonthermal laser
stimulated surface processes (LSSP) seem to be taking place in some of these
experiments.”’8  The present work 1s sn attempt to set up a general
formalism capable of dealing with LSSP from a microscopic point of view which
is as "first principles” as practicable.

Recent calculations of gas-surface interactions within a scattering or de-
sorption context have adopted classical and semiclassical® or quantun3’w’"’]2
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approaches with varying degrees of phenomenology. The semiclassical approaches,
for example, represent a good compromise between the simplicity of classical
trajectories and the details available from full quantum treatments. The latter
tend to be computationally tedious, often provide less insight and require approxi-
mations such as simplified phonon band structure, one-phonon treatment with a
linear chain model of the solid, and neglect of memory effects in the statistical
reduction of the lattice many-body problem.

The gas-surface studies referred to in the previous paragraph have dealt
with either physisorption or chemisorption, but no single formulation seems to
be applicable .o both. In the phenomenological theories of chemisorption, the
strong chemisorptive bond cannot be treated perturbationally. A unitary trans-
formation of the unperturbed states is necessary to account for this..'3’14 The
states of the adatom are thereby changed to those of quasiparticles which move
on the surface, carry a distortional wave along with them, and include most of
the atom-surface interaction energy.

Another approach is to ignore the two-dimensional periodic nature of the
surface and include only a fzw surface atoms close to the adatom. Such "cluster"
calculations give rise to discrete energy levels in contrast to the band type
energy level structures typical of systems with translational symmetries. The
significance of the band structure in gas-surface dynamics is one of the ques-
tions which we address here.

The gas-surface interaction is a compliex many-body problem. In treatments
of the dynamics of surface processes, classical and quantum statistical theories
have been advanced3:?-13:15-18 o explain the general qualitative nature of the
thermodynamics (desorption, migration, etc.). However, quantitative interpreta-
tion is difficult because fundamental parameters such as the energy relaxation
rate and the surface migration rate sre not easily availabie from experiment;

they can be obtained theoretically, howaver, the accyracy being 1imited by the
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type of potential used (Morse, LEPS, Lennard-Jones), the degree of dimensionality,
and simplifying assumptions such as additivity of transition rates due to different

forces. In the case of LSSP, we further need to include the (possibly
synergistic) effects of the absorption of coherent electromagnetic radiation
by the adsorbed species.
A few experimental studies of LSSP have been reported. 7+8 Large
enhancements of the rates of reactions (relative to the rates for thermally
inftiated reactfons) involving hydroxyl and amino groups on a silica surface

7 These

have been obtained using Tow-power {-10 W/cm2) CO, laser radiation.
reactions take place on the surface, but the exact mechanism responsible for
the enhancement is unclear. Efficient selective laser pumping of particular
vibrational modes of the adsorbed species, followed by dissociation and
desorption of OH and NH groups have heen suggested. Alternatively, a
mechanism {nvolving a "hopping” electron-transfer mechanism has been proposed.
While both mechanisms seem pliusible. there ts no conclusive evidence from
theoretical or experimental studies to support efther. An estimated very
short 1ifetime (- 10~1 s ) of the vibrationally excited states of, say, the
Si-N bond would tend to favor the electron-transfer mechanism.7 However,
1ifetimes as short as these do not appear universally, and one cannot dismiss
the vibrational pumping mechanfsm. Other {nstances of LSSP have been
reported, some fnvolving absorption of the radiation in the gas phase with
subsequent surface reaction, and others involving absorption of radiation
during an actual surface pr-oc:css.8

Recent theoretica) attempts aimed at understanding the mechanisms in LSSP
have adopted a mainly statistical kinetic approach.3'7"7']8 They have

pointed out the sensitivity of LSSP to the laser frequency and fluence, and

have shown that the critical psrameter is the rate of energy transfer from the
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vitratiozally excited adspecies to the solid. This energy relaxation rate
in turn depends on the nature of the coupling between the adspecies

and the s01id. While lattice vibrations represent the primary means for

energy transfer in nonmetals, in metals the quasicontinuum of conduction

elcctrons] 9¢:an exchange energy with excited vibrational states of the

adspecies. Evaluation of these rates seems to be the primary bottleneck in a

quantitative understanding of LSSP.

In this paper, a formalism §s presented to deal with the energy
relaxation of a vibrationally excited adatom punped by an infrared laser and
coupled to phonons of the solid. This represents only a small portion of the
vast array of processes occuring in a laser-irradiated gas-surface system, hut
extension to other aspects of the problem is possible.

The core of this formalism is presented in Section 11. The discussion in
Section 111 includes 1imiting cases and suggests points of departure where
contact can be made with other:' formalisms, mainly phenomenological ones. The main

points of the paper are summarized in Section IV.
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11. Formalism for Multiphonon Relaxation of an Adatom After IR Laser

lrradiation.

The physical processes which this formalism attempts to describe involve
the absorption of infrared laser radiation by an adatom bound by the periodic
(in 2D) potential at a solid surface. The vibrationally excited state thus
created then decays via energy transfer to the various modes of vibration of
the solid. For the sake of simplicity we do not consider relaxation to
electronic degrees of freedom which would be quite important for metals.
Furthermore, it is assumed that a good representation of the potential at the
surface can be obtained efther in coordinate space or in the Fourier space.
For example, in many cases, particularly physisorption, the surface potentia)
can be approximated by a sum of pair potent1a1s.‘° the Fourier expansion
of which converges rapidly enough to make the problem computationally
tractable. The fact that only energy transfer to phonon modes of the solid is
being considered means that adatom-adatom {nteractfons, which Tead to T2= or

phase-relaxation processes, are being ignored. In other words, 2

low-coverage situtation is being envisaged. i

In considering the interaction between the laser and the adatom, previous f
models have often assumed the existence of a well-defined "active® g
mode, 17,18,20 that s one associated with a transition between states of the |
adatom-s011d system which are separated by an energy gap nearly equal to the
laser frequency. In the Bloch picture of delocalized adatom states, the
energy levels appear as bands.}uﬂth band gaps which are complicated functions
of the 20 wave vectors in the 20 Brillouin zone of the surface. The
{dentification of a particular single active mode is difficult in this case.
In dealing with direct transitions of the adatom from states in one band to
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those in another, the “resonance” condition may occur at many different parts
in the 20 :-space. and it is the cumulative effect of all such transitions
wiicn will distinguish one laser frequency from another. For the moment the
oh1y restriction that may be applied to the laser is that its frequency be of
the same order of magnitude as the expected gaps in the energy level band
structure of the adatom under the influence of the surface potential.

The other interaction being considered is that between the vibrationally
excited adatom and the phonon modes of the solid. If adsorption {is not very
strong, one may proceed by solving the zero-order problem of the adatom in ¢
potential field of the solid frozen in 1ts equilibrium configuration, and
applying the influence of the motion of the lattice particles on the adatom as
a perturbatfon. With zero-order states of the system represented by
combinations of the ahove 2ero-order states of the adatom and phonon states of
the harmonic lattice in the absence of the adatom, multiphonon relaxation of
the adatom is described by traﬁsitions between these many-guasiparticle

states. The strength of these transitions involves matrix elements of the

perturbation operator mentioned before.

A. The Total Hamiltonian.
0
Let 1(, be the Hamiltonian of the adatom of mass m under the influence

of the potential VO(r) due to the solid at equilibrium,

1o - --;;- LR 1 (1

V() « TR0, (2)
1 ) §
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>
where r is the position vector of the adatom and Eg is the equilibrium

position of the zth lattice particle. Hereir(;-ﬁg) {s a suitably chosen pair

h

potential between the adatom and the 1t lattice particle. The 2ctual

potential can be written as
> > >
V(r) = Ju(r-R ), (3)
1 ) 4

+> ' th
where Rlis the instantaneous position of the £  lattice particle. The
> >
difference between V(r) and VO(r) is the perturbation A¥ responsible for

phonon relaxation of the vibrationally excited adatom,
» > > > > >

s = V() -0 = IfuiR) w0 . (4)
1 2 2

0
To get the complete Hamiltonian for the system, the contribuﬁonsj{v ander

due to vibrations of a harmonic lattice and interaction with the laser field,

respectively, must be included i.e.,
0 0
HoaH, K+ X s s ()

We employ solutions of the two zero-order problems, namely one set for the

adatom {n the potential VO(r),
0 »> (1 S +
Halajn>=egynlain> , (6)

and another set for the normal modes of vibratfon of = he lattice in the
harmonic approximation ,
00 0 0
‘}(V'V.'V!V ’ (7)
with

1(3 = (1/2) § {ig(f) + ..,g(I)q: )} . (8)
kb
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In Eqs. (6)-(8), a, j and; are quantum numbers representing a band index,
quintization of motion along the z axis and quantization of motfon in the xy-
plane, respectively (; is 2 2D wave vector); the eigenvalues ‘aj; correspond
to the stationary states of the adatom {n the potential V0; ¥, and ¢y are the
many-phonon wave function and energy, respectively, for the whole crystal; and
qb(Tt) and &b('l:) are th-e normal displacement :oordinate and momentun,
respectively, for a phonon with wave vector k in the phonon branch b and

Y
frequency ub(k).
The Hamiltonian for the interactfon of the system with the laser

field is simplified by assuming that, due to a near-resonance condition,

most of the radiation is absorbed by the surface-adatom bond. The Hamiltonian

1 then becomes
Heo — e (heip) (9)
‘ S o e (p° *Pls

" om O

-
where p s the momentum operator for the adatom, eo

-
charge on the adatom and A is a vector potential for the laser field at time t,

A (;.t ) = Ag € exp [i(:.; -wt )] +cee. , (10)

€,
respectively . If it {s further assumed that the incoming flux of photons

{s large enough so that absorption dominates over emission, then the complex

conjugate part (c.c.) of Eq. (10) can be neglected.

B. Solutions of the Zero-Order Problem.
The zero-order problem {s represented by the Ham{ltonfan

1° 1 <Ky ()

is some residual effective

€, % and w being the unit polafization vector, wave vector and freguency,



0 0
For simplicity the assumption that](. andllv can be solved separately [Eqs.
(6) and (7)) is made. The solutions so obtained are then combined to provide

a description of the overall problem defined v the Hamiltonian in Eq.(5).

The two zero-order problems are discussed below.

1. Zero-Order Problem for the Adatqmllgg;
As 1n most problems involving periodicity, 1t is convenient to

transform to the Fourfer space.j At the surface of a perfect solid, the
potential is periodic along the surface plane (theXy-plane) but not in the z
direction. The appropriate Fourier expansion of Vo(;) is based on the
condition

] Vi i:) -, (12)

-

where Xl is a lattice vector ajong the surface plane

-iO (.0 0) s L0t
P T TR L T 3P L

(13)
n1, n2 being integers and :1. :2 primitive surface lattice vectors. As a
0
result of Eq. (12) we can write V (;) as a Fourier series
0 0 0 2%
V(r) 2V (X,2) =3 Vo (2) 6K, (18)
&»
G

0
where the Fourier transform Vc (z) 1s given by

vg (z) = —i-“- X | a0 o8, (15)

2D
unit cell

Ay being the area of a 2D unit cell, Ay = l:1 3 :zl. The expansfon in Eq. (14)
is over all 20 reciprocal lattice vector:(RLV)'a for the exposed surface plane,
10
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3 - mlgl + mzsz ’ (16)
g - @ x & . e 2 2xdy . an
i a9 2 3, .G,

where £ is a unit vector normal to the surface (xy- or alaz-)
plane. Thus for any plane parallel to the surface plane, the 2D
RLV are completely specified by two integers my and m, to be used

as subscripts, for example vz(z) g Vhlmz(z).

The surface potential is, in general, 2 smoothly varying function,
and the Fourier expansion can be expected to converge quite rapidly. This s

10,21

borne out by recent calculations, using summed pair potentials (Morse,

Yukawa etc.), where vﬁ1.mz (z) was found to be appreciable only for my, m2 <2,
and by the qualitative success of models using pure sinusoida) functions for
vo(;)- 22 The maximum value of (m,mz) can therefore serve as one measure of
the degree of approximation in actual computations.

The stationary states for a single particle with a periodic Hamiltonian

0
J(‘ are characterized by a quasicontfnuum of quantum numbers, namely 20 wave

vectors
e 1o V2 o
N ®em by 4= b; (18)
M N

V1 and V2 are integers, and Ny and N2 signify the (large-) number of unit

cells along the ;1 and :z directions, respectively, beyond which the crystal
0

surface 1s repeated. The single-particle states ¢ must then satisfy the

Born-von Karman boundary condition on a surface

00 ‘0 00 > Oo

o (r+Nay) = ¢ (r+ Naaz) =9 (r), (19)
Teading to the Bloch functions '

0 » 0 1;-: i;';
0.j; (r) = Z .¢J§¢G (2)e e . (20)

11
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In Eq.(20), summing overE allows us to restrict . :!1 + :lz to the 20
first Brillouin zone (FBZ),namely the area defined by

by b b2 b2
- a— n —— L o o— n ——
> ¢ M S5 i~ < M2 < (21)

Using Eqs. (1), (14) and (20) in Eq. (6), we get

2 0 6'x 0
z[‘_vo + Z VE'( )e € j‘ ¢ fadhs (z)
G G'
X exp (1?5&) exp (1;-*) = 0. (22)

Using symmetry associated with translatfon of the reciprocal lattice by RLVY

we obtain

0 + o @
(2) JERY (z) } exp {i(n ¢+ G)X} =0, (23)

0
which leads to a set of coupled differential equations for the 0. Rt (2),
namely,

a2 A2+ 22 O 0
= Y (n+G) - c.ﬁ] ot (z)

vg_g. (2) .:j:, , (2) = 0. (24)

)
<&
. 6
The solutfon of the set of equations (24) represents the first major

computational task in a treatment of the stationary states of an adsorbed

atom.

12
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2. Zero-Order Problem for the Lattice Vibrations,}(u.

The transformation of the actual Hamiltonian of a vibrating
lattice to the form of Eq. (8) fs based on a Born-Oppenheimer (adfabatic)
approximation, and the inclusion of only harmonic terms in the expansion of
the interatomic potential ®_: here = denotes a particular electronic state of
the crystal. The norma\-méae transformation reduces the vibrating lattice to
a set of 38N noninteracting one-dimensiona) harmonic oscillators, where g8 is
the number of atoms in a unit cell and N 1s the number of unit cells in the

crystal.

In principle, we can write Eq. (7) as a Schrddinger equation,

] 8 2+ 2+]0 00

- - 2——4 Y = 7

2 Z K 2q2 * oplkla (k¥ =e ¥, » D
kb b (k)

0 .
and write 'v as a product of single-oscillator wave functions
0 0 +
v eJle] . lag) . (28)
v tb vp(k) D

0
since]{v {s a sum of {ndependent single-oscillator Hamiltonfans, with vb(z)
the number of quanta of the (zb) vibration in the system. Eq. (27) can now be

written as a series of single-oscillator equatfons

sa (i i
Qb(k)
0 0 >
o > k » 29
oty il ["b‘ )] (29)

whose solutions are [ v = vb(:). qQs qb(:). we ub(:i]

13
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0 v [a\(1/2)  =(1/2)ua?m o2
dov(q) -'VZ’ (;ﬁ-) vie Hv = | (30)

th
where Hv fs the v Hermite polynomial. Also,

0 0 0 » »
c * € -Z t"b(t) . z [vh(k) + (1(2) T, (k) (31)
kb " kb

where the subscript {v} represents a specific set {vb(z)} of 3gN vibrational
quantum numbers which describes the state of the system.

The dispersion relation embodied in the functional form of
ub(:) is the primary information necessary for a complete description
of the phonon spectrum. Extensive experimental and theoretical work has been
done in this area,and highly accurate phonon band structures and dispersion
relations are known from neutron scattering, infrared absorption, Raman

scattering, Brillouin scattering and X-ray scattering. 23

0
3. Jytion 0_ 0‘ .

In the harmonic approximation, the equilibrium positions of the atoms in a
0
crystal, l’!‘. do not represent dynamical varfables. The total zero-order
Hamiltonfan, Eq. (11), can then be written as

2 2
j(o' -%VE*V() +7 SRR

82
L 7. qg(t) 3 (k)qb(k (32)

14
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The solutions of a Hamiltonian which is the sum of {ndependent single-particle
Hamiltonians, in this case for one adatom and 38N phonons, are products of

solutions of the individual single-particle Schrodinger equations,
0 [-o : » }] 0 > 0 -
4 ’ k - - k){. 33
c.ﬁ(vb(ﬂ} r {qb( ) Yaih (r)ngb(k)[qb( )] )

These will be denoted | a}n; (vb(z)} >, and the (:.q) representation will be
implied. Also, the abbreviated forms v, q and w will be used instead of

& L 4
vb(:), qb(k) and ub(k). respectively, wherever appropriate.

C. Absorption of Laser Radiation and Phonon Relaxation.

Eq. (5) s the total Hamiltonian for the system. One possible way of
viewing it s to ascribe to aH and H, the status of perturbations imposed on a
system otherwise described by the zero-order Namﬂtonun]'ln -}(: +R3 « Such
a description is not appropriate for all cases of physical interest, and it is
necessary to clearly define the limitations of such an approach as well as

alternate routes for cases falling outside these 1imits.

)18

b
The recent phenomenological studies of LSSP 7 have provided some

insight into the above questions. It {s seen that relative time scales for
the vibration of the adatom/surface bond and the phonons, the associated
energy gap and the effective coupling between the two must be considered in
deciding what kind of perturbative approach, {f any, is applicahle. Thus, for
Mgh temperatures (large aX), high optical pusping rates (large¥.), very
strong bonding between the adatom and the surface, or a very small energy
difference between the adatom/surface vibrational frequencies and the Debye
frequency of the solid, straightforward application of a perturdation spproach
may be {nadequate. In such cases 1t may become meaningless to separste the

18




degrees of freedom of the solid from those of the adatom/surface bond, and a
basis-set transformation may be necessary to describe the new degrees of
freedom which would in general differ considerably from the original ones.

13,14

Such transformations have been discussed previously in the context of

phenomenological treatments within a second-quantized formulation of
phonon-mediated energy transfer in condensed systems. We shall not pursue
this aspect of the problem but restrict ourselves to cases where aX and ¥,
can, in fact, be considered as perturbations of J[: 41'(3.

We begin by writing the transition rate for an adatom from a laser-punped

state |e> of energy cqo to 8 state [g> of energy ¢g using Fermi's Golden rule

=feiy- -fey 8¢,
Rlo-e) '%‘G' ) Tl Ve Fug) (36)

% |<le| a3 |7g>12 & [ce - €g - (c;-q)] ’
wherel1)and|f) are initia) and fina) phonon states of the lattice,
respectively, with energies ¢4 and o and Wg and Mg are probabilities of
findings the adatom in the states |e > and |g >, after 2 fast short pulse of

laser radiatfon. Because of the 3-function, wa must have

t,'ﬂ'l.'t’""'ﬁ.gn (35)
which allows us to write R as
peq) -1 -t -sa
R(gre) = 2%(2 . m) ; ; o« vy - e )
X [<1e| Ai(lfg)lz §loeg - (o5 - et)] , (36)

or

R(gee) -?- (z .-m) ! { ; ;‘"m |<tel numlz a[a.,-(c,-qj. (37)

16




To simplify R(g-e) further it is convenient to expand a¥ in terms of Fourier
components of the pair potential tr(;). With

> >
+ =igr
Lx1 jurye " dF, (38)
vt
where V is the volume of a unit cell, we can write
*> “‘a' (;'io)
V (r) =3 Tvaee (39)
1 9 e
and
L J > P (40)
o(re
W) = 1 vy ¢ j-lrfe)
2 Q
$0 that
for [ -1gRy  -1q.R} (@)
AR=Vlv, ¢ J \e -e ‘
1 Q
q
The rate then becomes
Bed ! Pey
- e
w0 - (1) 1171
Q4q
> @ »> @ > + o0
iq'r o «iq'°r -iq°Ry -1q°Ry
X 4 <lv, ¢ |@<glv,, ¢ je> * z; Cile -e |
q i Iy
18Ry 1q'hes
X ctle | e b (1}8lseg - Leg weid) (2)

17




We now use the 3-function representation
! fegt/n <ig t/h faggt/h
G(Agg - [Cf‘t1]) | !lﬂ dt e ¢ t’ e 9 (43)

to transform the operator in the first phonon matrix element:

et/ -let
Tlee mlf)-(ilé(t)lf). (44)

GO == <i|e &e
Also, since
;]mﬂ =1, (45)
we get
y L 4 *
e) =1 w
Ag-e) 37 - Z";":-'ﬁ.es a',eg
qq'
[ J
-o-oo <> ’0)
-1(q°RY - q'°RY, fage t/M -8cq\ !
xYYe 1 2 thc“’ to 1)
22
-®»
»> & > >
8¢ ~fq.u (t) id"u_,(0)
% ;. ! <1|(¢ . 1)(e L | R} R (46)
where we have used the following:
> -Oo L 4
+ 47
Rgn R, *y, (47)
and
: - o
ig'r
f. = <le o (48)
Q.e9

In taking the diagonal phonon metrix elements in Eq (46), only those terms

18




in the operator which correspond to the product of two exponentials will
survive. The remaining terms involve operators @& (other than unity) which
create or annihilate at least one phonon and contribute nothing to <i|$]i>.
The constant terms involved in the phonon operator lead to b(Aegt/ﬂ) when the
Fourier transform is taken, and these also do not contribute. The overall

Fourier transform can therefore be written as

S: a et <<e -G';l(t) e 13:51"”)) (49)

The double brackets represent an ensemble average whose evaluation has been
discussed extensively in the Hterature.u The operator ;). is linear in the
creation and annihilation operators for phonons. Hence it follows that the
commutator [A,8] is a c-number, where A and B are the exponents in the

ensemble average, that {s

Az ;';’.(t) . (50)
B g, (0 (51)

Thus
e o8 = A*8 ¢ (1/2)[A,8] (52)

and

. 0.0 - 4..0 0
« » = <o i u‘(t) 9 "z‘( n». (53)

For operators @ linear in harmonic-oscillator creation/annihilation

operators we Mvozs

® (-uz)«b?»T

e e (54)

Use of the above eventually leads to the rcsn":1 1,2,27
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LK J »> * >
<« » = .xpl:fu“' (q\q') + q'cnz'(t) . f:]. (55)
where
Voo @3 2 /<@ 4 @ 307> (56)

is a Debye-Waller-1ike factor, and

3 > o+
sz'(t) z <<"z(t)"z‘(°)>> (57)

is a correlation function fnvolving the atomic displacements at sites 2,2'

and times t and 0. The energy transfer rate thus becomes:

ok -q" R0,)

* «f(q.R =-q"'.

a(?e) - ] V-. ..fq f..‘ W A ), e 3 l.

‘T\'zé %, QVQ Qieg 9 ,eg ed ; Z'

x dt exp {M‘gt,ﬁ - Huﬁ,;) +q° c,.l. (t) . ;l . (58)

The separation of the rate expression into sections depending on the adatom
properties and those depending on the properties of the solid is an attractive
feature of this formalism and 1s primarily due to the treatment of momentum

28 The computational

transfer and energy>transfer as independent varfables.
procedure now calls for the solution of the coupled differential equations for
the stationary states of the adatom in the static crystal potential,
calculation of transition probabilities for these states under laser

frradiation, and finally the calculation of the correlation functions cxx'(t)'

20




N D WITIEeRyT TN T

One starts by utilizing the expansion of the displacement '\31,
in the harmonic case, in terms of phonon creation and annihilation
operators ‘I:Eb and Ay rcspm:t::i.vely.29 With M the mass of the
lattice atoms in a monatomic crystal an@ N = N1N2N3 the total
number of unit cells, we can write

- 1/2 - 1:'5 t
Uz s (ﬁﬂ) ) ‘i b‘g; ] 2 '[l{b + a’KJ » (59)

¢
kb [wp(k)]

t0 obtain the correlation tensor in the form

<<u1(t) ul,(0>>- }_‘EM_’)‘_ ebgk‘)ehm
kb W.(k)
k. (R -R o (k fo (k
X k 1')[(;‘ ’erb( )t*'ri. ewb( " , (60)
b kb

where iﬁb is the Bose function

>
- sto (k) |-
Ry e b . (61)
b
It 1s expedient at this point to take the continuum 1imit of the phonon
&»
band structure by replacing the sunmation over wave vectors k with an

>
integration over k space,

Lim § F(k) = -:'—"g & ri (62)

¥
Tk

where V is the volume of the crystal, to obtain

21

i, L

8o
EO - M




> * & >
t . ke (R =R ¥ -dw (k)t
C b

(t) = av, § dk ‘g,{‘l:)eb*(;} e 2 e
! T6min b

+2'r{ibcos{ub(;)t} «(63)

From Eq. (58), the rate R(g-e) is seen to involve the time Fourier transform

of exp[cu,(t)]. 1f a cumulants-type expansion is reasonable, the first-order

term will be important, name‘!y29

¢ 1wegt.: -
dt e Cu,(t) = -&;ﬁ{ nlweg) *+ 1} s9n (weg)

- > 2% i;. i -i . -
x 12, ak [eb(k)eb (k) e ( 2 2 ) 6{W§g - wi(k)}] . (64)

n ' :
The term involving Cu,(t) is the n-phonon term. Clearly the one-phonon term

- 4
(n=1) dominates when |Cu.(t)|/a2 <¢ 1, where a is a typical lattice

parameter. Evaluation of the higher-order terms can be simplified by writing

r 4
the rate as a Taylor expansion in the Cu,(t). We first write R(a+e) as

= [Up\2 ¢ ) d c . 65
R ST Pl NEC RS

$

where 10 §s the characteristic time of the highest frequency phonon. MWriting
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3 c 2
311.(11.())-2[1”;( 23 ) L, u 23

Ipp! 3
2L /o Cottore

"
¢ n
eee "!" ! a SN ] (66)
4+ .+__HT§§. .;?F:I_. + ’
d 22" EE"
(¢,2') being the Cartesian indices x,y,z, we get the rate in the form2?
R(g+e) = Y1 .o RN () ) (67)
n-1 u O IR B TER 1 S
2). 144 /
where
1«)egt n
s ) dt t) . (68
pﬂ.l’.‘.r,a.(ueg) s .2_;‘_ e 11'.E’,'( ) ( )

Use of the relationship

[_J
awf, () Fuy () = Fun-r) -, (69)
-0
where F,(f) 1s the Fourfer transform of f(t) at w,
o
(70)

fut
Fo(f) = 1 laef(t)e .
x

b 4

gives a recursion relation between the ds:
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. —w)d 7
(weg) = \dw Py yyr ps () WU D w)ds )

8

[
n+l,20 08"

t

which is useful for computational purposes.
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IIl. Discussion
In developing Eq. (58) for the vibratfonal energy transfer rate from a
laser-excited adatom to phonons, the two-dimensfonal periodicity alung the xy-
plane has not been explicitly exploited. Important physical effects and
simplifications of the formalism are associated with this periodicity, some of
which we now examine.
The Potential. The nature of the potentials Vo(;) and V(:) in Eqs. (2),
(3), (39) and (40) is very different along the z direction as compared to that
along the xy-plane. Both must approach a constant for large z and be
; essentially oscillatory on the xy-plane near the surface. It may also be
necessary to allow for different contributions to the potentials due to {fons
? at or near the surface and those deep {n the bulk. Formally, the latter is
accomplished by affixing an extra index to the pair potential in Eqs. (2) and
(3), namely,

Vi) - I v, (?-ig) ’ (72)
v(r) = ! .v,l(.’--il) . (73)

Inclusfon of these effects is probably most practical for purposes of a

phenomenological description of LSSP. Writing Eqs. (39) and (40) in the forms

<+ o0 0 >
0 -1Q° -iq 2 iq'r
V(r)=3 747 [Te 2 )e Z2yile (74)
qQ * zO 0 Q
z Q 2 xl
and
P PO
-1Q°X 1 -1 fq'r
IR IR D DY S T TS L o 1
Q 21z |- q
2Q ] 2\x
) ]
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-0 - s o -
the sunmation over xl in Eq. (74) reduces to 5(Q-G), with q & (Q,qz) and G a
primitive 20 reciprocal lattice vector in the plane of the surface. Such a
reduction does not take place in Eq. (75) because the; are not fixed
vectors. Because of the smaliness of the atomic df sphf:ements from
equilibrium, it is reasonable to use a sharply peaked (Gaussian or Lorentzian)
function QG(Q) with the peak at Q= 8, to replace the sunmation over x in
Eq. (75). Eqs. (74) and (75) may therefore be written as

[ 0 >
> > e =i iq°
@yl 1,4 scdde %y v, e’ (76)
A K,
and o
> &> ‘1q1 ’-‘
Vir) = ¥ | r{ 9.(Q)e 2 2y, VT (77)
q =+ ]2 G Q
2Q | 2

The temag(a) represents the "inelasticity” of the transition process viewed
as a scattering event, namely the departure from purely diffractive scattering
described by 6(3-5) in Eq. (76). The averaging procedure implied in the use
of&a(a) is not always appropriate. In particular, {f the characteristic time
scale of the overall relaxation process is comparable to or smaller than a
typical period of vibration of the atoms in the solid, no such averaging is
possible. Examinatfon of Eqs. (42) - (46) with the aim of applying the forms
(76) and (77) of the potential reveals a substantial simplification by
allowing a reduction of the sumations over illand ix' to those over only 7,
and zl,. This 1s an important step in establishing the connection between
three-dimensional and one-dimensional treatments of LSSP. The development
of a formalism to exploit this two-dimensional translational symmetry is in
progress.
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Polarization Eigenvectors. The terms N Vztgl:)e“ 2

in Eq. (59) represent components of the efgenvectors of the dynamical matrix

29 The z-component of & muse clearly be

in the harmonic approximation.
complex ¢n order for the displacement function to damp out for 2>>0. The

displacement operator may then be written as

- 172 ! ?(k Btk '“z t 78)
IJ e + .
( Z i, TR 1

Assuming a knowledge of the form of w (k). the expresstion in curly brackets
depends only on b, K and zl. all dependence on kz having been absorbed in the
summation. This represents another point at which a phenomenological approach
could be applied effective.'ly. sfnce a model for ub(.l.() could be introduced
along with assumptions regarding the range of values for k;.

Models for Dispersion. In addition to Zb(I). a knowledge of ub(:) is

necessary for actual evaluatfon of R(gee). Oetailed information on the form
of ub(?z) fs available from experimental and theoretical studies of a number of
systems, but for the present semiquantitative study, & model such as the
Einstein or Debye model may suffice. In the former, phonon dispersion is

entirely suppressed by assuming the form

“b(:) - w o a constant, (79)

which neglects all correlations between displacements of different lattice

atoms, and by ascribing a single vibrational frequency to all points ; on all

branches b. This model precludes energy transfer over a range of energies




but does provide the simplest picture of phonon band structure. The Debye

model, on the other hand, assumes a linear dispersion
L J
o (k) =y & (80)

independently of branch index, and thereby allows for energy transfer over a
(quasi-) continuous range. The use of Eq. (80) in conjunction with
assumptions of isotropy and simple cubic structure reduces the expression for
Cll,(t) and the Fourier transforms of [ctz'(t)]“ to computationally convenient

forms. Actual calculational procedures are currently being developed in this

laboratory.
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v, nd Conclysions

A general theoretical technique has been developed for the treatment of
multiphonon relaxation of an adatom vibrationally excited by low-power laser
radiation. The dynamical processes are embodied in correlations between
displacements of different atoms of the solid at different times. The
correlation functions and their Fourier transforms, though complicated,
provide a concise physical description of the relaxatfon process; the
n-phonon processes involve Fourier transforms of the nth power of the
correlation function. The generality of the final expressions for the
relaxation rate has the advantage of providing Tinks between phenomenological
treatments of the problem and establishing the significance of various

assumptions involved in the latter.
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